1 Introduction

Radiated emission tests are typically carried out in anechoic chambers, using antennas to pick up the radiated signals. Due to bandwidth limitations, several antennas are required to cover the complete frequency range. Furthermore, it requires much space and the cost of the equipment for a standard conformant setup is immense.

An engineer of a small or medium size enterprise usually has to rely on his experience and on best practice methods in order to design an EMC compliant product. Nevertheless, it is estimated that > 50% of products fail testing first time around. Anytime an engineer sends a new product for compliance testing, it is a shot in the dark. Failing is very expensive. Not only that re-testing costs are high, but also the project schedule and market introduction gets delayed.

What is needed is an affordable laboratory set up to measure radiated emissions in the own lab, prior to compliance testing. A TEM cell is the right piece of equipment for desktop testing of radiated emissions. Tekbox developed open TEM cells to cover the complete frequency range up to 2GHz and with usability even at frequencies beyond.

Combined with a spectrum analyzer, products can be tested before and after EMC related design modifications. A set up with a TEM cell will not deliver exactly the same quantitative results as a measurement in a certified test house, however it will give an excellent indication on whether the design suffers from excessive radiated noise or not. The engineer will clearly see, whether his changes improved or deteriorated the EMC performance or whether it remained unchanged. Using TEM cells eliminates the guesswork.

2 TEM cell

A TEM cell is a stripline device for radiated emissions and immunity testing of electronic devices. It is not a replacement, but due to its size and cost it is a convenient alternative to measurements in an anechoic chamber.

A TEM cell consists of a septum, the conductive strip in the centre section and walls which are connected to ground. The geometry is designed to present a 50Ω stripline. The device under test (DUT) is placed in between the bottom wall and the septum.

The TBTC1/2/3 are so called “open TEM cells”, which got no side walls for convenient placement of the DUT. It may pick up RF background noise, which however can be taken into account by doing a measurement of the cell output signal before powering on the DUT.

Tekbox open TEM cells got a better frequency response compared to standard TEM cells of similar size. TEM cells suffer from higher order wave modes which limit the usable bandwidth. A unique design feature of the Tekbox TEM cells implements resistance perpendicular to the desired propagation direction of the wave. Consequently higher order wave modes and resonances are suppressed.

The device is supplied together with a 50Ω/25W RF termination and a DC block to protect the spectrum analyzer or RF receiver input.

Application of TEM cells

Radiated emission tests:
The septum of the TEM cell picks up radiated noise from the DUT, similar to a broadband antenna, and presents it to the spectrum analyzer or to a receiver input.

AVAILABLE NOW FROM
SAELIG CO. INC.
www.saelig.com
Radiated immunity tests:
The TEM cell will be connected to the output of a swept signal generator + RF amplifier. The septum radiates the RF signal into the DUT. The RF signal is typically amplitude or pulse modulated.

Complete solutions

Following additional equipment may be used for a complete and low cost setup:

Radiated emission testing: Spectrum analyzers such as the RIGOL DSA815

RF immunity testing: RF power amplifiers from MINICIRCUITS
A suitable amplifier for immunity testing of industrial products is the Mini Circuits, model ZHL-2. It can deliver up to 0.8W (126V/m) and covers the frequency range 10 MHz to 1 GHz. http://www.minicircuits.com/pdfs/ZHL-2.pdf

Examples for suitable amplifiers for RF immunity testing of automotive products are the Mini Circuits, model ZHL-20W-13+ and the LZY-22+

Picture 1 – radiated emission measurement of a controller board using the TBTC1 TEM cell and a Rigol DSA815 spectrum analyzer
OPEN TEM CELLS FOR EMC PRE-COMPLIANCE TESTING

3 EMC pre-compliance testing with the TBTC1/2/3- radiated emissions

Combined with a spectrum analyzer, products can be tested before and after EMC related design modifications. The engineer will clearly see, whether his changes improved or deteriorated the EMC performance or whether it remained unchanged. Tem cells eliminate the guesswork.

Terminate any of the two ports of the TEM cell with the 50Ω load, connect the DC-Block to the other port and connect it to the input of the spectrum analyzer or test receiver. Place the DUT under the septum and power it on. Reduce the input attenuation of the analyzer to 0dB and if available turn on the pre-amplifier to increase the dynamic range of the measurement. Reduce the resolution bandwidth to 9 kHz or whatever specified in the corresponding standard. Set the trace to max hold and let the analyzer run as many sweeps as may be necessary to catch pulsed or sporadic signals from your DUT.

EMC measurements are typically started by performing scans using a peak detector to find problem areas. Spurious suspected to exceed the limits should then be measured using a quasi-peak detector, if available on your receiver or spectrum analyzer. A quasi peak detector measures the weighted peak value of the envelope of a signal. Signals are weighted according to their duration and repetition rate. Signals that occur less frequently will result in a lower quasi peak value than frequent signals. Due to the nature of this measurement method, quasi peak measurements consume much more time than simple peak measurements and are often carried out with reduced span in frequency regions with high amplitude spurious.

The TEM cell can be very effectively used to identify potential issues that may result in failing the compliance test. As a rule of thumb, given that the PCB is positioned not much higher than 1-2cm above the bottom wall, any spurious with amplitudes higher than 40dµV are a threat.

A quick check to ensure that spurious are not picked up from outside is done by powering off the DUT. Despite its construction, the TEM cell is not very sensitive to signals from outside. However cables connected to the DUT may pick up background noise and guide it into the TEM cell. This signals are usually also present with the DUT powered off and consequently can be easily identified. Take a screenshot of the radiated spectrum, modify your design, and check if it improved. Any reduction of spurious level measured in the TEM cell, will also translate into a reduction of the spurious level measured in the test house.

When failing a compliance test, measure it in the TEM cell and save the results before carrying out any modifications. Compare the spurious levels documented in the compliance test report versus the spurious levels measured in the TEM cell. Check how many dB’s are missing to pass the test. Modify/improve the device until the spurious level measured inside the TEM cell dropped accordingly.

![Picture 2 – radiated emission measurement set up](image-url)
Example of radiated emission measurements before and after modification

Picture 3 – TBTC1, radiated emissions of a LED lamp prototype

Picture 4 – TBTC1, radiated emissions of a LED lamp prototype after modification. The spurious level in the measured frequency range could be reduced by 10dBµV. The spurious crossing 30dBµV was identified as picked up from outside.
OPEN TEM CELLS FOR EMC PRE-COMPLIANCE TESTING

4 EMC pre-compliance testing with the TBTC1/2/3 - immunity to radiated signals

The E-field (V/M) between septum and lower (upper) wall of the TBTC1 is

\[E = \frac{V}{d} \]

where \(V \) is the RMS voltage of the applied signal and \(d \) is the distance between septum and lower (upper) wall. This is based on the simplified assumption that the E field would be perfectly homogenous/evenly distributed.

A more practical formula is \(E = \frac{V \times Cor}{d} \) where \(Cor \) is a correction factor for the average field strength over the volume of the DUT derived from the analysis of the field distribution over the cross section of the cell.

Assuming the DUT is placed in the center of the cell and in the middle between bottom wall and septum, we can however use the simplified formula with sufficient accuracy.

\[
\begin{align*}
\text{d} = 5 \text{ cm} & \quad E = \left(\sqrt{\frac{P}{50\Omega}}\right) \times 20 \\
\text{d} = 10 \text{ cm} & \quad E = \left(\sqrt{\frac{P}{50\Omega}}\right) \times 10 \\
\text{d} = 15 \text{ cm} & \quad E = \left(\sqrt{\frac{P}{50\Omega}}\right) \times 6.66
\end{align*}
\]

<table>
<thead>
<tr>
<th>TBTC1, applied RF power</th>
<th>Maximum field strength between septum and wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>10W (40 dBm)</td>
<td>447 V/m</td>
</tr>
<tr>
<td>1 W (30 dBm)</td>
<td>141 V/m</td>
</tr>
<tr>
<td>0.1 W (20 dBm)</td>
<td>44 V/m</td>
</tr>
<tr>
<td>0.01 W (10dBm)</td>
<td>14 V/m</td>
</tr>
</tbody>
</table>

Table 1 – TBTC1, field strength vs. RF power

<table>
<thead>
<tr>
<th>TBTC2, applied RF power</th>
<th>Maximum field strength between septum and wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>10W (40 dBm)</td>
<td>224 V/m</td>
</tr>
<tr>
<td>1 W (30 dBm)</td>
<td>71 V/m</td>
</tr>
<tr>
<td>0.1 W (20 dBm)</td>
<td>22 V/m</td>
</tr>
<tr>
<td>0.01 W (10dBm)</td>
<td>7 V/m</td>
</tr>
</tbody>
</table>

Table 2 – TBTC2, field strength vs. RF power

<table>
<thead>
<tr>
<th>TBTC3, applied RF power</th>
<th>Maximum field strength between septum and wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>10W (40 dBm)</td>
<td>148 V/m</td>
</tr>
<tr>
<td>1 W (30 dBm)</td>
<td>47 V/m</td>
</tr>
<tr>
<td>0.1 W (20 dBm)</td>
<td>14 V/m</td>
</tr>
<tr>
<td>0.01 W (10dBm)</td>
<td>5 V/m</td>
</tr>
</tbody>
</table>

Table 3 – TBTC3, field strength vs. RF power
OPEN TEM CELLS FOR EMC PRE-COMPLIANCE TESTING

Terminate any of the two ports of the TEM cell with the 50Ω RF-termination, and connect the other port to a swept frequency generator / RF power amplifier. Place the DUT under the septum and power it on. Sweep the frequency and observe the behavior of the DUT. The field decreases with approximately 30dB/m outside the cell, hence it is uncritical to operate it in ordinary facilities.

Picture 3 shows a “minimum set-up” for immunity testing. Test houses would furthermore insert a directional coupler in between the power amplifier and the TEM Cell and monitor forward and reflected power. EMC standards differ largely with respect to the applied field strength. Standards for industrial electronics such as EN61000-6-4 specify 10V/m (prior to the application of modulation) whereas individual standards of automotive manufacturers may specify a field strength as high as 400V/m. The required field strength determines the requirements for the RF power amplifier as listed in tables 1 to 3. Certain standards specify the RF signal to be amplitude modulated, others specify pulse modulation.

5 Technical data

TEM Cell TBTC1

TEM cell dimensions:
- Length: 390 mm
- Width: 200 mm
- Height: 108mm
- Septum height: 50 mm

TEM cell connectors: N-female

Nominal cell impedance: 50 Ohm

Wave impedance: 377 Ohm

Maximum RF input power: 25W

Input return loss: S11 up to 1.2 GHz < -20dB, up to 2.1 GHz < -17dB, up to 3GHz < -14dB

Transmission loss: up to 1.4 GHz < 1 dB, up to 2.1 GHz < 3dB, up to 3 GHz < 6dB
OPEN TEM CELLS FOR EMC PRE-COMPLIANCE TESTING

TEM Cell TBTC2
TEM cell dimensions:
Length: 636 mm Width: 300 mm Height: 205 mm Septum height: 100 mm
TEM cell connectors: N-female
Nominal cell impedance: 50 Ohm
Wave impedance: 377 Ohm
Maximum RF input power: 25W
Input return loss: S11 up to 800 MHz < -15dB, up to 1.5 GHz < -10dB, up to 3GHz < -14dB
Transmission loss: up to 800 MHz < 1 dB, up to 1.15 GHz < 3dB

TEM Cell TBTC3
TEM cell dimensions:
Length: 1038 mm Width: 501 mm Height: 305 mm Septum height: 150 mm
TEM cell connectors: N-female
Nominal cell impedance: 50 Ohm
Wave impedance: 377 Ohm
Maximum RF input power: 25W
Input return loss:
Transmission loss:

DC-Block 50V-6GHz-N
Connectors: N-Male/Female
Nominal impedance: 50 Ohm
Max. continuous RF power: 2W
Max. continuous RF voltage: 50V RMS
Frequency: 500kHz to 6 GHz VSWR: ≤ 1.2
Insertion loss:

<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>0.3</th>
<th>0.7</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion loss [dB]</td>
<td>7.5</td>
<td>3</td>
<td>1.5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.06</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 4 – DC-Block frequency response

RF-Termination 50Ω-3GHz-25W-N
Connector: N-Male
Nominal impedance: 50 Ohm
Max. continuous RF power: 25W
Frequency: DC to 3 GHz VSWR: ≤ 1.2
Third order intermodulation: ≤ 120 dBc
OPEN TEM CELLS FOR EMC PRE-COMPLIANCE TESTING

Picture 6 – TBTC1, input return loss

Picture 7 – TBTC1, transmission loss
OPEN TEM CELLS FOR EMC PRE-COMPLIANCE TESTING

Picture 8 – TBTC2, input return loss

Picture 9 – TBTC2, transmission loss
6 Warning

Keep the DUT insulated from the septum and cell walls. Insert the DC-block to get additional input protection for the spectrum analyzer or measurement receiver.

7 Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBTC1</td>
<td>Open TEM cell, 50mm septum height, Termination 50Ω-3GHz-25W-N, DC-Block 50V-6GHz-N, N-Male to N-Male coaxial cable</td>
</tr>
<tr>
<td>TBTC2</td>
<td>Open TEM cell, 100mm septum height, Termination 50Ω-3GHz-25W-N, DC-Block 50V-6GHz-N, N-Male to N-Male coaxial cable</td>
</tr>
<tr>
<td>TBTC3</td>
<td>Open TEM cell, 150mm septum height, Termination 50Ω-3GHz-25W-N, DC-Block 50V-6GHz-N, N-Male to N-Male coaxial cable</td>
</tr>
</tbody>
</table>

Table 5 – Ordering Information

8 History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>14.04.2016</td>
<td>Mayerhofer</td>
<td>Creation of the document</td>
</tr>
</tbody>
</table>

Table 6 – History